Clarke and math

Accepts: 2
Submissions: 13
Time Limit: 5000/2500 MS (Java/Others)
Memory Limit: 65536/65536 K (Java/Others)
Problem Description
Clarke is a patient with multiple personality disorder. One day, he turned into a mathematician, did a research on interesting things. Suddenly he found a interesting formula. Given $f(i), 1 \le i \le n$, calculate $\displaystyle g(i) = \sum_{i_1 \mid i} \sum_{i_2 \mid i_1} \sum_{i_3 \mid i_2} \cdots \sum_{i_k \mid i_{k-1}} f(i_k) \text{ mod } 1000000007 \quad (1 \le i \le n)$
Input
The first line contains an integer $T(1 \le T \le 5)$, the number of test cases. For each test case, the first line contains two integers $n, k(1 \le n, k \le 100000)$. The second line contains $n$ integers, the $i$th integer denotes $f(i), 0 \le f(i) < 10^9+7$.
Output
For each test case, print a line contained $n$ integers, the $i$th integer represents $g(i)$.
Sample Input
2
6 2
2 3 3 3 3 3
23 3
2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Sample Output
2 7 7 15 7 23
2 9 9 24 9 39 9 50 24 39 9 102 9 39 39 90 9 102 9 102 39 39 9
Hint
In the first sample case: f(1)=2,f(2)=f(3)=f(4)=f(5)=f(6)=3 when k=1 g(1)=f(1)=2,g(2)=f(1)+f(2)=5,g(3)=f(1)+f(3)=5,g(4)=f(1)+f(2)+f(4)=2+3+3=8,g(5)=f(1)+f(5)=5,g(6)=f(1)+f(2)+f(3)+f(6)=2+3+3+3=10 when k=2 g(1)=f(1)=2,g(2)=f(1)+(f(1)+f(2))=7,g(3)=f(1)+(f(1)+f(3))=7,g(4)=f(1)+(f(1)+f(2))+(f(1)+f(4))=15,g(5)=f(1)+(f(1)+f(5))=7,g(6)=f(1)+(f(1)+f(2))+(f(1)+f(3))+(f(1)+f(2)+f(3)+f(6))=23 Therefore output 2 7 7 15 7 23