navigation switch
Home
Contests
Notification
Clarification
Problems
Ranklist
Status
HackStatus
×
1005 题面更新,请注意。
唯一指定树
Accepts: 12
Submissions: 40
Time Limit: 5000/3000 MS (Java/Others)
Memory Limit: 32768/32768 K (Java/Others)
Problem Description
给定一个连通的带权无向图$G$(可能有重边,但没有自环)。对于它的每一条边$e$,问是否存在图$G$的生成树$T$,使得$e$在$T$中出现,$T$中的每条边的权值(重复算多次)的中位数恰为边$e$的权值。
Input
第一行一个整数$n$表示数据组数($1\le n\le 10$)。 每组数据的第一行有两个正整数$n$和$m$表示图中的点数和边数($1\le n\le 100000$, $n$是偶数,$n-1\le m\le 200000$,保证输入的图连通)。 接下来$m$行每行三个正整数$a,b,w$分别表示一条边的两个端点和它的权值($1\le a,b\le n$, $1\le w\le 10^9$)。
Output
对于每组数据输出一行$01$串,其中第$i$个字符为$1$表示对输入中第$i$条边的询问的答案为真,否则表示为假。
Sample Input
Copy
1 4 5 1 2 1 2 3 2 1 3 5 3 4 3 4 1 4
Sample Output
Copy
01011