#include #include #include #include #include #include #include #include #include #include #include using namespace std; #define L(i) i<<1 #define R(i) i<<1|1 #define INF 0x3f3f3f3f #define pi acos(-1.0) #define eps 1e-4 struct Point { double x, y; Point( double x = 0, double y = 0 ):x(x), y(y) { } }st[5]; typedef Point Vector; struct Circle { Point c; double r; Circle(Point c,double r):c(c),r(r){} Point point(double a) { return Point(c.x + cos(a)*r,c.y + sin(a)*r); } }; struct Line { Point p; Vector v; double ang; Line(){} Line(Point p,Vector v):p(p),v(v) { ang = atan2(v.y,v.x); } Point point(double t) { return Point(p.x+v.x*t,p.y+v.y*t); } bool operator < (const Line& L) const { return ang < L.ang; } }; Vector operator+( Vector A, Vector B ) //向量加 { return Vector( A.x + B.x, A.y + B.y ); } Vector operator-( Vector A, Vector B ) //向量减 { return Vector( A.x - B.x, A.y - B.y ); } Vector operator*( Vector A, double p ) //向量数乘 { return Vector( A.x * p, A.y * p ); } Vector operator/( Vector A, double p ) //向量数除 { return Vector( A.x / p, A.y / p ); } bool operator<( const Point& A, const Point& B ) //两点比较 { return A.x < B.x || ( fabs(A.x - B.x) < eps && A.y < B.y ); } int dcmp( double x ) //控制精度 { if ( fabs(x) < eps ) return 0; else return x < 0 ? -1 : 1; } bool operator==( const Point& a, const Point& b ) //两点相等 { return dcmp( a.x - b.x ) < eps && dcmp( a.y - b.y ) < eps; } double Dot( Vector A, Vector B ) //向量点乘 { return A.x * B.x + A.y * B.y; } double Length( Vector A ) //向量模 { return sqrt( Dot( A, A ) ); } double Angle( Vector A, Vector B ) //向量夹角 { return acos( Dot(A, B) / Length(A) / Length(B) ); } double Cross( Vector A, Vector B ) //向量叉积 { return A.x * B.y - A.y * B.x; } double Area2( Point A, Point B, Point C ) //向量有向面积 { return Cross( B - A, C - A ); } Vector Rotate( Vector A, double rad ) //向量旋转 { return Vector( A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad) ); } Vector Normal( Vector A ) //向量单位法向量 { double L = Length(A); return Vector( -A.y / L, A.x / L ); } Point GetLineIntersection( Point P, Vector v, Point Q, Vector w ) //两直线交点 { Vector u = P - Q; double t = Cross( w, u ) / Cross( v, w ); return P + v * t; } double DistanceToLine( Point P, Point A, Point B ) //点到直线的距离 { Vector v1 = B - A, v2 = P - A; return fabs( Cross( v1, v2 ) ) / Length(v1); } double DistanceToSegment( Point P, Point A, Point B ) //点到线段的距离 { if ( A == B ) return Length( P - A ); Vector v1 = B - A, v2 = P - A, v3 = P - B; if ( dcmp( Dot(v1, v2) ) < 0 ) return Length(v2); else if ( dcmp( Dot(v1, v3) ) > 0 ) return Length(v3); else return fabs( Cross( v1, v2 ) ) / Length(v1); } Point GetLineProjection( Point P, Point A, Point B ) // 点在直线上的投影 { Vector v = B - A; return A + v*( Dot(v, P - A) / Dot( v, v ) ); } bool SegmentProperIntersection( Point a1, Point a2, Point b1, Point b2 ) //线段相交,交点不在端点 { double c1 = Cross( a2 - a1, b1 - a1 ), c2 = Cross( a2 - a1, b2 - a1 ), c3 = Cross( b2 - b1, a1 - b1 ), c4 = Cross( b2 - b1, a2 - b1 ); return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; } bool OnSegment( Point p, Point a1, Point a2 ) //点在线段上,不包含端点 { return dcmp( Cross(a1 - p, a2 - p) ) == 0 && dcmp( Dot( a1 - p, a2 - p ) ) < 0; } double PolygonArea( Point *p, int n ) //多边形有向面积 { double area = 0; for ( int i = 1; i < n - 1; ++i ) area += Cross( p[i] - p[0], p[i + 1] - p[0] ); return area / 2.0; } int getLineCircleIntersection(Line L,Circle C,double &t1,double &t2,vector sol) //直线和圆的交点 { double a = L.v.x,b = L.p.x - C.c.x,c = L.v.y,d = L.p.y - C.c.y; double e = a*a + c*c,f = 2*(a*b + c*d),g = b*b + d*d - C.r*C.r; double delta = f*f - 4*e*g; if(dcmp(delta) < 0) return 0; if(dcmp(delta) == 0) { t1 = t2 = -f/(2*e); sol.push_back(L.point(t1)); return 1; } t1 = (-f - sqrt(delta)) / (2*e); sol.push_back(L.point(t1)); t2 = (-f + sqrt(delta)) / (2*e); sol.push_back(L.point(t2)); return 2; } double angle(Vector v) //计算向量极角 { return atan2(v.y,v.x); } int getCircleCircleIntersection(Circle C1,Circle C2,vector& sol) //计算两圆相交 { double d = Length(C1.c - C2.c); if(dcmp(d) == 0) { if(dcmp(C1.r - C2.r) == 0) return -1; return 0; } if(dcmp(C1.r + C2.r - d) < 0) return 0; if(dcmp(fabs(C1.r-C2.r) - d) > 0) return 0; double a = angle(C2.c - C1.c); double da = acos(C1.r*C1.r + d*d - C2.r*C2.r) / (2*C1.r*d); Point p1 = C1.point(a-da),p2 = C1.point(a+da); sol.push_back(p1); if(p1 == p2) return 1; sol.push_back(p2); return 2; } int getTangent(Point p,Circle C,Vector* v) //过定点做圆的切线 { Vector u = C.c - p; double dist = Length(u); if(dist < C.r) return 0; else if(dcmp(dist - C.r) == 0) { v[0] = Rotate(u,pi/2); return 1; } else { double ang = asin(C.r / dist); v[0] = Rotate(u,-ang); v[1] = Rotate(u,ang); return 2; } } int getTangents(Circle A,Circle B,Point* a,Point* b) //求两圆公切线 { int cnt = 0; if(A.r < B.r) { swap(A,B); swap(a,b); } int d2 = (A.c.x - B.c.x) * (A.c.x - B.c.x) + (A.c.y - B.c.y) * (A.c.y - B.c.y); int rdiff = A.r - B.r; int rsum = A.r + B.r; if(d2 < rdiff*rdiff) return 0; double base = atan2(B.c.y-A.c.y,B.c.x-A.c.x); if(d2 == 0 && A.r == B.r) return -1; if(d2 == rdiff*rdiff) { a[cnt] = A.point(base); b[cnt] = B.point(base); cnt++; return 1; } double ang = acos((A.r - B.r) / sqrt(d2)); a[cnt] = A.point(base+ang); b[cnt] = B.point(base+ang); cnt++; a[cnt] = A.point(base-ang); b[cnt] = B.point(base-ang); cnt++; if(d2 == rsum*rsum) { a[cnt] = A.point(base); b[cnt] = B.point(pi+base); cnt++; } else if(d2 > rsum*rsum) { double ang = acos((A.r+B.r) / sqrt(d2)); a[cnt] = A.point(base+ang); b[cnt] = B.point(pi+base+ang); cnt++; a[cnt] = A.point(base-ang); b[cnt] = B.point(pi+base-ang); cnt++; } return cnt; } double torad( double deg ) //角度转弧度 { return deg / 180.0 * acos( -1.0 ); } void get_coord(double R,double lat,double Ing,double& x,double& y,double& z) //经纬度(角度)转化为空间坐标 { lat = torad(lat); Ing = torad(Ing); x = R*cos(lat)*cos(Ing); y = R*cos(lat)*sin(Ing); z = R*sin(lat); } int ConvexHull( Point *p, int n, Point *ch ) //求凸包 { sort( p, p + n ); n = unique( p, p + n ) - p; int m = 0; for ( int i = 0; i < n; ++i ) { while ( m > 1 && Cross( ch[m - 1] - ch[m - 2], p[i] - ch[m - 2] ) <= 0 ) --m; ch[m++] = p[i]; } int k = m; for ( int i = n - 2; i >= 0; --i ) { while ( m > k && Cross( ch[m - 1] - ch[m - 2], p[i] - ch[m - 2] ) <= 0 ) --m; ch[m++] = p[i]; } if ( n > 1 ) --m; return m; } int isPointInPolygon( Point p, Point *poly, int n ) //判断一点是否在凸包内 { int wn = 0; for ( int i = 0; i < n; ++i ) { Point& p1 = poly[i], p2 = poly[ (i + 1)%n ]; if ( p == p1 || p == p2 || OnSegment( p, p1, p2 ) ) return -1; //在边界上 int k = dcmp( Cross( p2 - p1, p - p1 ) ); int d1 = dcmp( p1.y - p.y ); int d2 = dcmp( p2.y - p.y ); if ( k > 0 && d1 <= 0 && d2 > 0 ) ++wn; if ( k < 0 && d2 <= 0 && d1 > 0 ) --wn; } if ( wn ) return 1; //内部 return 0; //外部 } bool checkConvexHullIntersection( Point *a, Point *b, int na, int nb ) //判断凸包是否相交 { for ( int i = 0; i < na; ++i ) if ( isPointInPolygon( a[i], b, nb ) ) return true; for ( int i = 0; i < nb; ++i ) if ( isPointInPolygon( b[i], a, na ) ) return true; for ( int i = 0; i < na; ++i ) for ( int j = 0; j < nb; ++j ) if ( SegmentProperIntersection(a[i], a[ (i + 1) % na ], b[j], b[ (j + 1) % nb ] ) ) return true; return false; } int main() { int T,C = 1,v; //printf("%d\n",2<<1|1); scanf("%d",&T); while(T--) { //scanf("%d%d",&n,&v); for(int i = 0; i < 5; i++) scanf("%lf%lf",&st[i].x,&st[i].y); sort(st,st+5); if(st[4].x - st[0].x < eps && st[4].y - st[0].y < eps) { printf("Yes\n"); continue; } if(st[1].x - st[0].x < eps && st[1].y - st[0].y < eps) { printf("No\n"); continue; } int k = 0; double b[10]; for(int i = 0; i < 5; i++) for(int j = i+1; j < 5; j++) { b[k++] = Length(st[i]-st[j]); } sort(b,b+10); if(fabs(b[0] - b[4]) < eps && fabs(b[5] - b[0] * 2 * sin(54.0/180*pi)) < eps) printf("Yes\n"); else printf("No\n"); } return 0; }